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The methodology for conversion of transient current data in the time domain into dielectric loss data in 
the frequency domain using the Brather approximation is described. A test of the accuracy of the 
approximation is made using the 'stretched exponential' relaxation function (Kohlrausch-Williams-Watts 
function) for which the Fourier transform has been previously tabulated for a range of exponent 
fl(0 < ]7 ~< 1 ). As an example of the application of the Brather approximation we report ultra-low frequency 
dielectric loss data (10-3.5 to 10-0.4) for a liquid-crystalline side-chain polymer as derived from transient 
current data. 
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INTRODUCTION 

Ultra-low frequency dielectric measurements of solid 
polymers are conveniently performed by measuring the 
transient current I (t) obtained following the step removal 
of a steady voltage V from a sample, and performing a 
Fourier transform of ( I ( t ) / V )  to yield the components 
of the complex dielectric permittivity via the relation I : 

f0 5((~) - 5oo = q ) ( t ) e x p ( - i c o t ) d t  (1) 

where q ) ( t ) = I ( t ) / V C o  and Co is the geometric 
capacitance of the sample, ~o = 2nf  where f is the 
frequency of measurement (Hz) and 5o is the limiting 
high frequency dielectric permittivity. The transient 
current method has been used to obtain low frequency 
dielectric relaxation data for polymer solids for many 
years 1 and has been improved by Mopsik 2'3 using 
modern computational methods and modern instru- 
mentation, allowing data to be obtained in the range 
10 -4 to 10 4 Hz. Mopsik 2'3 showed that loss factors 
ranging from several units to very small values ( ,~ 10- 5 ) 
could be measured for solid polymer materials. 

During the course of our studies of the dielectric 
properties of thermotropic liquid-crystalline side-chain 
polymers *-6 it became apparent that a convenient 
method for the transformation of transient current data 
into dielectric loss data was that due to Brather 7 which 
is a generalization of the point-by-point transformation 
method originally developed by Hamon a. The Brather 
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approximation was used by Ribelles and Calleja 9 to 
obtain ultra-low frequency dielectric loss data for solid 
poly (n-butyl methacrylate) and subsequently we applied 
the approximation to transient current data for 
homeotropically aligned and unaligned samples of a 
siloxane liquid-crystalline polymer in its smectic phase 6. 

Some time ago it was found that a satisfactory fit of 
the dielectric dispersion and absorption curves for the 
primary (e) relaxation in amorphous polymers 1°-13 and 
low molar mass glass-forming liquids 14 could be obtained 
using a 'stretched exponential function', ~( t ) ,  of the 
following form : 

O(t) = exp - ( t / % )  ~ (2) 

where 0 < fl ~ 1, Zo is an effective relaxation time and 
q~(t) in equation (1) is related to ~ ( t )  by the relation 
q~(t) = I d ~ ( t ) / d t l .  This is known as the Kohlrausch- 
Williams-Watts (KWW) function. The normalized 
permittivity and loss are calculated using the integral 
transforms : 

5'(co)-5oo _ f f  
50 - -  5oo 

5"(co) _ fo ~ 
50 - -  5o0 

do ( t ) cos cot dt  (3) 

d0(t) sin cot dt (4) 

In the earlier work, the accuracy of the point-by-point 
transformation method ( I ( t ), t )  --* (5"(co), co), where 
co = 0 .2n / t ,  of Hamon s for the KWW function was 
investigated and it was shown that poor accuracy was 
obtained for log coZo < 1. Subsequently Koizumi and 
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Kita ~5 gave tables of the normalized permittivity 
and loss as a function of log~zo for 0.3 ~< ~ <  1.0 
and - 3 . 0  < log coz < 3.0 as derived numerically from 
equations (2) (4). 

In the present work we outline the methodology for 
using the Brather approximation and we assess its 
accuracy for the particular case of the KWW function 
(equation (2)). The Brather approximation involves the 
use of a set of I ( t )  values to obtain g'(o~) data at each 
chosen value of o~. A part of this process is to extrapolate 
the derived d'(e~) data to values of o~ larger than those 
calculated initially. This process is iterated and leads to 
a convergence of the calculated d'(c~) values in the 
low-frequency band. Thus the method provides a means 
of reducing errors associated with the truncation of the 
Fourier transform due to band-limited data 2'3. We then 
proceed to show how the method may be applied to 
experimental transient-current data for a liquid- 
crystalline polymer. 

THEORETICAL BACKGROUND 

The Hamon transformation method s assumes that:  

~o(t) = c t - "  (5) 
where c and n are material constants. I t  was shown by 
Hamon s for 0 < n < 2 that: 

~(t) 
d ' ( ~ )  - (6a)  

CO 

o~ = 0 . 2 n / t  (6b) 

This point-by-point transformation is accurate for 
frequencies above the loss-factor maximum, but is 
inaccurate for frequencies below that loss peak, as has 
been demonstrated by Williams and coworkers for the 
particular cases of the Cole-Cole relaxation function 16 
and the KWW function TM. However, the function 
(equation (5)) can only be true over a limited segment 
of q~(t). Another method for obtaining d'(~o) from 
transient data is to carry out the Fourier transform 
directly. However, experimental data for q~ (t) are always 
band-limited, leading to truncation errors through lack 
of data at both short and long times. Such errors affect 
the calculated e"(~o) values at all values of o~. 
Experimentally, the problem of rapid data acquisition is 
of importance because the currents at short times make 
an important contribution to the Fourier integral. 
Mopsik 2'3 extrapolated his short-time data towards the 
time-origin using a cubic-spline method. While this 
proved satisfactory, large amounts of computing power 
were required, which would not normally be available 
using a personal computer. Also, a degree of artificiality 
is introduced by using a curve-fitting procedure to 
produce more data points. 

Brather 7 derived equations which allow d'(~o) for a 
chosen value of ~o to be determined from a sequence of 
I (t) values. The method is far more accurate than the 
Hamon methods, as we shall demonstrate. In its 
operation, the transient data themselves are sufficient if 
the times for measurement of I ( t )  are small compared 
with o~ -~. However, to span an entire loss curve a 
knowledge of e"(~o) at values of o~ higher than those 
calculated is required, so it is necessary either (i) to 
extrapolate the initially calculated d'(¢o) data to higher 
frequencies, or (ii) to complement the transient data with 

experimental low frequency measurements (10 -1 to 
102 Hz), e.g. using a Scheiber bridge 17. These additional 
values of/3" (o9) are inserted into the Brather equations 
and are necessary in order to reduce truncation errors, 
as we have indicated in the Introduction. 

Brather 7 deduced the following equations for the loss 
factor, which give values that would have an error of 
~<3%. 

d'(og) = a~')~o(1/2i~o) + b~l)e"(2Jog) 
(0 /30  L j  = - 3 j = 1 

+ error term (d(~o), ~o) (7) 

for l =  1 3 

where a~ ° and b~ ~J are given in Table 1 of reference 7. 

d'(og) = 1/3 [0.240~o(8/~o)- 1.167q~(4/aQ 
0 

+ 1.083q~(2/~o) + \ ~ -  + 0.61073 q~(1/e)) 

1 - 3  1 

+ 0.6998 ~ ~ q~(1/2Jo)) 
j = l  

+ ~, {8.4752q~(1/2'-2co)+ 5.12~o(1/2'-'co)} 1 

1 
+ ~ [ -  0"5407d'(21~°) + 1.1185/3"(21+1co) 

-- 0.2074/3" (2 t + zoo ) ] 

_+ error term (d'(~o), ~o) 

for / = 4 - 7  

(8) 

If to is the first value of time chosen from the (q~(t), t) 
data, then for each value of I (l = 1-7), use of the data 
with the chosen values ( to l )  gives a value of d'(oJ) at o~, 
where 

09 = ( 2 1 - t ) / t  o (9) 

Thus each chosen value of to gives loss factor values at 
seven frequencies. Increasing to yields sets of loss factor 
values for lower frequencies (see equation (9)). The 
highest attainable frequency is obtained when t o = too, 
where too is the first time of measurement of ~o(t) and 
l = 1, so co is equal to ~Ooo = 1/too. As too is decreased, 
0900 increases accordingly. The lowest attainable 
frequency occurs for l = 7 so that ~o = 2-6/to . As t o is 
increased, so co (measured) decreases accordingly. As 
indicated above, the Brather approximation relies on the 
replacement of (~o(t), t) data in the range 0 < t < too by 
a set of values of d'(~o) at frequencies higher than ~Ooo 
and are : 

e"(2Jo9), j = 1, I + 2 for 1 = 1-3 

d'(2~o), for l = 4 7 

Once these values are estimated by extrapolation of the 
loss curve for 09 < ~Ooo calculated in the first cycle of the 
Brather method, they may be re-inserted and this 
iteration performed until the loss values in the frequency 
range of Brather approximation coverage. Since the 
practical range of our experiments, conducted with a 
higher impedance ammeter, is between 10 -0.5 and 
10-3SHz,  a mid-frequency technique such as the 
Scheiber bridge 17 may provide experimental values of 
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loss factor in the range 10 -a to 10 - 2  Hz for use with the o5 
Brather equations. The approach we describe in the 
present paper, however, was to use the Hamon 
approximation on the same (~o (t), t) data which we were o4 
also going to transform with the Brather equations to 
produce a 'first-guess' loss spectrum from which we 
extrapolate the required high frequency loss data for 

03 
insertion into the Brather equations. The iteration was 
made using the Brather equations and inserting the 
improved high frequency data on each cycle until 
convergence of loss values in the Brather range was ~ o.2 
achieved. Such a procedure removes the need to do 
additional high frequency loss measurements using the 
Scheiber bridge or a similar technique. 

METHODOLOGY OF THE BRATHER 
TECHNIQUE AND COMPUTER PROGRAM 

The above process was translated to a programmable 
personal computer. The program was interactive, 
requiring manual intervention to extrapolate the loss 
curve to frequencies acquired for the input guess value 
of the dielectric loss. A schematic of the program is given 
below. 
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Figure 1 Normalized loss factor G/co versus l o g f  obtained using the 
Brather approximation applied to the KWW function (equation (2)); 
/7= 0.75. A,  z o = 100; ©,  T O = 10; m,  To = 1. Here e o is the limiting 
low frequency (or static) permittivity 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Acquire (~o(t), t) data by charging the sample at 
a voltage, V, and measuring the decay current 
following the step removal of the voltage. 
Carry out the Hamon approximation for 
conversion of (q~(t), (t)) ~ (e"(o)), 09) (equations 
(6)). 
Select too, this being the first point at which you 
have good data. 
The given value of too and l = 1-7 will define 
the first-guess values of g'(o)) required for the 
first cycle of the use of the Brather equations. 
Thereafter, manual extrapolations of e" (co) from 
calculated Brather values are used. 
Produce plot of e" (co) against log f .  If this is the 
first cycle or the values of e"(o)) have not 
converged sufficiently, it is necessary to extra- 
polate to 'high'  frequencies to obtain 'better- 
guess' values for input into step 4, and continue 
for l = 1-7 for the same too. Otherwise continue 
to next step. 
Choose a new to (to > t00) and go back to step 4. 

One exits from the cycle at the end of step 5 either 
because there are sufficient values of (g' (co), 09) to define 
an acceptable spectrum or because the highest acceptable 
value of to, experimentally, has been exceeded. If one 
tries to use t o values that are too large, there will not be 
data at sufficiently long times to apply the Brather 
equations. 

ACCURACY OF THE BRATHER 
APPROXIMATION AS APPLIED TO THE KWW 
FUNCTION 

We have tested the accuracy of the Brather approximation 
as applied to the KWW function (equation (2)) by 
comparing results obtained using equations (7) and (8) 
with the numerical results for the KWW function given 
by Koizumi and Kita 15. 

Since ~o(t) = Id~(t)/dtt it follows from equation (2) 

that : 

= --  exp - (t/zo) ~ (10) 
T0 

The parameter 17is related to the breadth of the loss peak 
and the value of To is related to the position of the loss 
peak in the plot g'(o)) versus logo). For our present 
calculations we show the experimental loss data as 
(G/o)) = Coe"(o)), where G is electrical conductance, 
since it is more amenable to practical determination and 
it obviates the need to know sample thickness and area 
(to determine Co). The errors were calculated as the 
percentage deviation of the results of using the Brather 
equations from those obtained numerically by Koizumi 
and Kita 15. Our calculations were performed for 
To = 100, 10 and 1 and for /7  = 0.50, 0.75 and 1.0 for 
each z0 value. The Hamon approximation values were 
also calculated for all (fl, To) values (since they were a 
necessary part of the procedure, as step 2). 

Figure 1 shows, as an example, the loss curves for fixed 
17 (=0.75)  and different values of To (100, 10, 1), as 
obtained using the Brather approximation for (~o(t), t) 
values obeying the KWW function (equation (2)). The 
loss curves are broad and asymmetric and move to lower 
frequencies as To is increased. For To = 1 only the 
low-frequency part of the loss peak is obtained, but 
its determination requires an extrapolation beyond 
l o g f  ~ 0.5, as described above. This provides a severe 
test for the application of the Brather approximation. 
We have determined e" (Brather)/g'  (numerical from ref. 
15) for data spanning the frequency range shown in 
Figure I and for different values of 17and z o. Figures 2a-c 
show the percentage error, determined from this ratio, 
for the particular cases To = 1 and/7 = 1.0, 0.75 and 0.50. 
In all cases the error is less than 4%, except for one point 
in Figure 2e, over the whole frequency range, which is 
a very satisfactory result. The results for 17= 1 
are particulary pleasing since it is well known 
that approximate methods for transforming transient 
current data into equivalent loss factor data become 
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less successful as single relaxation-time behaviour is 
approached 8,11,12,16. 

Figures 3a-c and 4a-c show similar plots to Figures 
2a-c for the sequences ~o = 10,/7 = 1.0, 0.75, 0.50 and 
% = 100,/~ = 1.0, 0.75, 0.50. Inspection of Figure I shows 
that the maximum loss occurs around - 2 . 0  and - 3 . 0  
for ro = 10 and ro = 100, respectively, which is true for 
any value of/7. For the sequence shown in Figures 3a-c 
the error curves show a systematic variation with 
frequency with an error maximum which moves to lower 
frequencies as/~ is decreased. Also, there is an upswing 
in the error curve which is accentuated as/7 is decreased. 
However, the error values are similar in all cases and the 
correction could be applied systematically to improve the 
accuracy of the Brather transformation method if 
experimental data warranted it. For the sequence in 
Figures 4a-c, again the error curves show a systematic 
variation with frequancy and an upswing is also noted 
at higher frequencies; but we also note that this occurs 
in the high frequency tail of the loss curve (see Figure 
1). The errors shown in Figure 4 are small in all 
cases, and corrections could be applied systematically 
to transformed experimental transient data if the 
experimental accuracy warranted it. 

The results shown in Figures 2-4 demonstrate the good 
accuracy of the Brather approximation when it is applied 
to the KWW function in a range of/7 values commonly 
observed for polymer relaxations 1°-13 and those in 
glass-forming liquids ~4. The magnitude of these errors 
contrasts markedly to those of the Hamon approxima- 
tion 8. Figure 5 shows, as an example, the curve for this 
approximation for the particular case % = 10,/7 = 0.50 
(for which s"ax occurs at l o g f  ~ - 2 ) .  For l o g f  > 1.5 
the error is less than 5% but at lower frequencies large 
errors are obtained. 

EXPERIMENTAL DATA FOR A 
LIQUID-CRYSTALLINE POLYMER 

To demonstrate the application of the Brather 
approximation to a polymer system, we have studied a 
siloxane liquid-crystalline side-chain polymer (LCP 6) 
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having the following structure" 

0 Si Me 3 Me 3 - Si - 0 Si - 

.' . 

Me 

R= ( C H 2 ) m - - O O C O O ~  ~ -  CN 

w h e r e  n = 5 0  e n d  m = 6  

where n ~ 50. This material was kindly provided by 
Professor G. W. Gray and Dr D. Lacey of Hull 
University. It has an apparent glass transition temperature 
(Tg) of 290.3 K and a clearing temperature (T~) of 325 K. 
The sample was prepared as a film 1 cm in diameter, 
150 #m in thickness and was contained between brass 
electrodes with poly(tetrafluoroethylene) spaces, to 
ensure uniformity of thickness, within a three-terminal 
dielectric cell. The cell temperature was maintained to 
___ 0.1 K using a controlled water bath. The material was 
aligned homeotropically by cooling slowly from the melt 
(cooling rate 0.05 K min -1 ) into the liquid crystalline 
state in the presence of 200 V at 800 Hz. The transient 
discharge current following removal of a charging 
voltage of 100 V d.c. was measured using a Keithey 617 
digital electrometer. The voltage (which was supplied by 
the electrometer) was maintained for 1 h before the 
transient decay current was measured. The first data 
point was at 0.365 s, which sets the lower limit of to in 
the Brather approximation. Initial currents were 

10- ~ A. The Brather approximation was applied to 
the data and made use of high-frequency a.c. dielectric 
data obtained for the sample using a Gen Rad 1689 
Digibridge ( 10-105 Hz), as described previously *-6. 

Figure 6 shows the results for the homeotropically 
aligned sample as obtained using the Brather approxi- 
mation in the range 10 -0.5 to 10 -3.5 nz. The loss peak 
is observed and moves rapidly to higher frequencies as 
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Figure 8 Log f . ,  versus 1 / T for the homeotropically aligned sample 

temperature is increased. For comparison, the loss data 
for the same sample, obtained in the higher frequency 
range by the a.c. method, is shown in Figure 7, while 
Figure 8 shows the plot of log fro, where fm is the 
frequency of maximum loss factor, against reciprocal 
temperature and covers a frequency range of 5.5 decades. 
A comparison of Figures 6 and 7 shows that the loss 
peaks in the two frequency ranges are of similar height 
and shape, although the loss peak at 23°C looks far too 
small. Figure 8 shows that log fm is continuous between 
the two ranges. We note that the downward curvature 
of the plot in Figure 8 is less pronounced than that 
observed previously 6 for a polymer whose structure is 
similar to the sample in this work, but having spacers of 
eight CH2 units and which forms a smectic rather than 
a nematic liquid crystalline state. The motions which give 
rise to the narrow (5) loss peak for the homeotropic 
sample correspond to the 00-relaxation mode s'18 in 
which the longitudinal component, #~ of the dipole 
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moment # of the mesogenic head group reorientates with 
respect to the director axis h. As the temperature is 
reduced towards the apparent glass transition temperature 
T~, the motions of the head group, which are coupled to 
the polymer chain motions, slow down markedly, 
indicating the freezing-in of configurational entropy of 
the entire sample, the restriction being conferred 
simultaneously on backbone and side-chain motions. 
This is one example where knowledge of the wide- 
frequency behaviour of polymers is necessary to answer 
questions regarding the relationship between main-chain 
and side-chain motions 19. In addition, the use of an 
ultra-low frequency dielectric technique means overlapping 
peaks may be better resolved if they have different 
apparent activation energies. Further, low frequencies 
are invaluable in examining the ageing properties of 
polymers since they can probe the motions at low 
temperatures near Tg where the volume realxation 
(densification) associated with ageing occurs. 

CO NC LUS I ON 

The methodology of the Brather approximation, as 
applied to the determination of ultra-low frequency 
dielectric loss spectra of polymers, has been described. 
Its accuracy has been investigated for the particular case 
of the KWW relaxation function, and is shown to be 
good if proper care is taken to include high-frequency 
losses, whether by extrapolation or by independent loss 
measurements. The Brather approximation has been 
applied to transient current data obtained for a siloxane 
liquid crystalline side chain polymer which has been 
homeotropically aligned; it is shown that the transient 
data, transformed into the frequency domain complement 
rather well the high frequency loss data obtained for the 
same sample. 
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